随着越来越多的用户与生成式 AI 模型进行互动,我们对 AI 马上可以解决的问题有了更深入的了解:那些我们已经拥有大量训练数据的问题;那些在 99% 的时间内都能获得正确答案会非常有用、但在 1% 的情况下出现错误也不会是灾难性的问题;以及基础模型可以不断吸收人类反馈并随着时间的推移会变得更好的问题。随着 AI 跨越鸿沟,进入主流,直观的工作流会推动大规模的采用,让那些不太熟悉 AI 的人快速看到其价值所在。
在下一代 AI 初创公司里,专注于工作流设计,并能根据用户反馈对模型做出微调的创始人能够做出最好的产品。
符合这种模式的初创企业有两类:一是 AI 代理,二是 AI 增强型 SaaS 。人工智能代理可完成重复性的知识工作——律师、工程师、会计师或者医生所从事工作当中的那些重复性的工作。人工智能增强型 SaaS 将依赖人工智能层从现有工作流中析取出更多的价值——比方说,给采集音频数据的平台添加文字记录和摘要,或增加语言界面来简化 SaaS 应用。在这两种情况下,为了保证输出质量,人工监督依旧存在。用户会给出正面和负面的反馈,然后这些反馈将被来对模型做出调整。
能在竞争中获胜的创始人会对界面和工作流进行合适的设计,基于当前的提示和自动完成模式进行创新,为用户提供高级控制,并降低认知开销。这些工作流会通过模板或专门的可组合模型来加速常见的用例,同时确保“紧急情况下打破玻璃”(break-glass”)选项可用于不常见的边缘情况。用户不必了解模型的工作机制或根据模型改造自己。当用户与产品交互时,通过接受答案而生成的数据会自动反馈回去,驱动个性化与留存的数据飞轮。
这些初创企业会专注于自己的核心竞争力,并将把通用人工智能模型的开发留给研究实验室和开源社区。实际上,后者已经推出了非常强大的模型。我们已经看到了像 Stable Diffusion 这样的文本生成图像模型,像 Whisper 这样的音频转录模型,以及像 GPT-J 和 GPT-Neo 这样的语言模型。初创企业则会利用 AI 研究的最新进展,当新模型可用时更换新模型,并根据专有的用户反馈历史数据做出微调。目前的局限性在于产品设计师的精力集中在让不了解 AI 的消费者能够轻松参与,并迅速从模型获得价值的界面上。这方面的护城河可以是用户与这些模型互动时收集到的综合的工作流与数据,这些可以为将来更强大的模型提供信息。
Copyright © 2022 真术相成 ・ 蜀ICP备2022001576号 川公网安备 51019002005104号