人工智能将改变我们用药物治疗人类疾病的方式。
一想到 AI 和制药时,我们最常想到的应用就是用于药物发现的 AI。(理由很充分:人工智能驱动的药物发现具有巨大潜力。)
但是,还有一个机器学习的用例,尽管它覆盖的范围不广(而且资金投入也较少),但因为有望更快、更有效地将改变数百万患者人生的疗法推向市场,所以也很引人注目。这就是数字孪生在临床试验当中的应用。
当今的临床试验效率低下且成本高昂,这是有据可查的。平均每一种新药需要 10 多年的时间以及 20 亿美元的开支才能推向市场。招募试验参与者是药物通过临床试验的一大障碍。一项试验需要招募成百上千乃至成千上万名志愿者才能满足试验组与对照组的人数需求。这一点已经成为一个重要瓶颈。80% 的临床试验都会因为登记问题而延迟,试验发起人每天因试验延迟的潜在收入损失高达 800 万美元。每年有数百个临床试验因受试患者人数不足而终止;事实上,这是临床试验被终止的首要原因。
“数字孪生”为这一挑战提供了一种变革性的解决方案。其基本想法很简单:生成式机器学习模型可以替临床试验患者模拟安慰剂的结果。这可以在个体患者层面完成:可以为试验实验组的每个人类试验参与者建立一个数字孪生,然后模拟该个体在对照组中的表现。
至关重要的是,这意味着制药公司需要招募的人类参与者要少得多,因为大部分对照组患者群体都可以被数字孪生取代。这大大加快了临床试验的速度和成本,让改变人生的疗法能够更快地进入市场,并惠及数百万有需要的患者。
总部位于旧金山的人工智能初创公司 Unlearn 就站在这一变革性技术的前沿。Unlearn 目前正在与包括默克集团在内在某些全球最大的制药公司合作,部署该初创公司的数字孪生技术,加速临床试验的进程。今年早些时候,欧洲药品管理局(European Medical Agency)正式批准 Unlearn 的技术可用于临床试验,标志着该技术已经赢得主要监管的认证,可为大规模部署做好准备。
预计几年之后,将数字孪生纳入临床试验,简化治疗药物的上市途径,将会成为制药和生物技术公司的标准做法。
值得注意的是,尽管与流行的文本生成图像模型无关,但用于临床试验的数字孪生是生成式人工智能一个引人注目的代表。生成式机器学习模型如何才能对现实世界产生巨大影响,并创造出数十亿美元的价值呢?为个体患者生成模拟的安慰剂结果就一个很好的例子。
Copyright © 2022 真术相成 ・ 蜀ICP备2022001576号 川公网安备 51019002005104号