广东番禺开发区的一家服装厂内,工人们正在埋头为Shein的快时尚外销服装赶工。吊挂在屋顶上的衣架在工位间穿梭,在一个工位上,工人每次快速完成一个流水线操作后,就拍一下缝纫设备上的大按钮,进行计件。
这一幕正渐渐出现在更多服装工厂里。在中国服装加工厂中,正在发生一些变化。
小批量、碎片化订单给服装加工厂带来了巨大的挑战。
按照传统作业逻辑,新款版样到达工厂后,需要经历一系列复杂的工作流程。首先由成熟的样衣工,将衣服从图样变成一件可以仿制的衣服,工艺工程师把制衣过程拆解成一道道较为简单的工序,一件羽绒服或连衣裙,可能要上百工序,几十个裁片;然后班组长按照工序安排工人,仓库和裁剪房准备物料。
这些事要靠人脑来做,跑通人、机、料一个流程通常要一到两周。
现在,小单快返的趋势,工厂上新款、翻单的频次越来越密集,从A款服装转到B款,也涉及很多问题,仅靠人脑来安排,变得越来越困难,时间也“耗费”不起了。
人工智能系统也在这个时候进入了中大型服装厂。AI汲取了大品牌、大工厂的供应链管理经验和精益生产理念,并在交期、人员技能、设备、工序、小组等约束条件下,对全厂范围内进行资源的配置,算出最优的生产和排产规划。
“AI其实模仿了工艺工程师拆款的能力,组长分配工序的能力,裁剪房算料、安排二次工艺的能力,同时监控流水线上的动态波动,解决瓶颈工序,让生产更加顺滑。”刘珂博士说。比如,一个工序上员工还不熟练,或者生病了,AI会实时算出新的分配方案。
这样,即使换款,人工智能还是能及时算出新款服装的方案。而且,它还能根据员工的“学习曲线”,安排员工最擅长的工序,生产效率能有所提升,员工的工资还会提高。
在人工智能的帮助下,这些工厂逐渐具备了应对复杂生产状况的能力,从而适应小单快返。
AI进入行业,离不开人工智能科学家的智慧。
关于传统行业与AI能不能结合,一直是一个有争议的话题。当年IBM的人工智能业务沃森落地出现问题时,AI科学家山景博士对数智前线分析,其中一个重要原因是科学家不太能躬身于行业实践,“两腿不沾泥”。
山景博士曾在阿里负责开拓了工业领域的智能化,这让他对下一线有深刻体验。
从IBM回国创业的飞榴科技刘珂博士则一直在服装领域从事智能化。她看到服装行业的一些AI团队,缺乏“下沉精神”。很多场景,在家里思考,是很难去理解的。
比如,明明从工序的角度说,是一道道往下走的,为什么有的又回流到前面的员工?到了现场,工程师才发现,那个员工的缝纫机后面有一个风扇正好对着他吹。“他坐在这里心情很好,能完成复杂的工作。”刘珂称,“这时候,你自然而然就会做出符合工厂的最好设计。”
在这样的背景下,她和团队团队,一年基本上有超过300天的时间在工厂。他们住工人的宿舍,“没有碗的,要么自己买个饭盒,要么找工人要个大瓷碗”。
相比而言,中国工厂的智能化,比起欧美企业要复杂得多,甚至有时“状况百出”。一些工人想多挣钱,只要我在流水线上,就不能让手上空着。他们做完自己的活,会跑到别的工人那里抱走一些裁片继续做,或者要求班组长给他增加一道工序。工序会被打乱,这是坐在办公室里想不到的场景。
在系统设计中,科学家们要思考怎么来管理这样的场景,让它成为“规范操作”。
目前,在中国服装行业核心产业带,如珠三角的东莞、深圳、番禺、中山,长三角的江浙一带,华北、东北和山东一带,工厂中正在发生变化。全面应用这些创新之后,消费者的需求能否被更好地顾及?工人们能否获得更好的回报?相比国际服装巨头们动辄千亿美元的市值,中国服装行业整体竞争力能否得到提升?从事智能化企业的价值是否可以体现?业界正在一点点地等待这些多赢局面的出现。
Copyright © 2022 真术相成 ・ 蜀ICP备2022001576号 川公网安备 51019002005104号